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Abstract 
 

Interval Analysis is a means of representing uncertainty by replacing single (fixed-point) 

values with intervals. In this project, interval analysis is applied to a foraging model in 

behavioural ecology. The model describes an individual foraging in a collection of 

continuously renewing resource patches. This model is used to determine the optimal 

residence time of the forager in a resource patch assuming the forager wants to maximize its 

rate of resource intake. Before applying interval analysis, fixed-point (non-interval) 

optimization will be done to serve as a basis. Certain parameters in the model will then be 

replaced with intervals and interval-based optimization conducted. A comparison of the 

interval and fixed-point results will be done as well as analysis of parameter intervals and 

their constraints, root approximations, and applications to the model. 
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Chapter 1: Introduction 

1.1 Interval Analysis 

 

1.1.1 Basics and Notation 

 This paper will explain only the basics of Interval Analysis (IA) needed to 

understand the topics covered and assumes some prior knowledge of IA and Matlab (see 

2.1.4 regarding Matlab). For a formal mathematical introduction and in depth coverage of 

concepts see Schwartz (1999) or Moore (1966) listed in the references. Interval analysis was 

initially developed in the late 1960’s to bound computational error and it is a deterministic 

way of representing uncertainty in values by replacing a number with a range of values 

(Schwartz 17). Fixed-point analysis is simply analysis using non-interval values where there is 

no uncertainty in the values. As a result, IA uncertainty concepts can be used to model 

varying biological parameters in the ecological model to be explored in section 1.2 and also 

to frame fixed-point results. 

IA’s mathematical definitions and notations are extended from set theory and 

ordered numerical sets called intervals (Schwartz 30). This paper considers closed interval 

analysis with the following definitions of an interval (using Matlab upper bound, lower 

bound style notation): 

}),sup(),inf(),sup()inf(|{)]sup(),[inf(  xxxxxxxxxx  

inf(x) – denotes the infinum, or lower bound of x 

sup(x) – denotes the supremum or upper bound of x 

1.1.2 Uncertainty and Approximating Values 

 There are a several useful quantities related to the concept of the interval: size, 

radius, and midpoint. The size (or thickness) of an interval indicates the uncertainty in a 
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value and is specified as a width: w(x) = sup(x) - inf(x) (Schwartz 32-33). Intervals with zero 

thickness are crisp intervals whereas non-crisp intervals said to be thick. The concepts of 

radius and midpoint are useful in describing intervals as well as constructing them. The 

radius and midpoint are defined as (Schwartz 33):  

 rad(x) = w(x)/2  

 mid(x) = (sup(x) + inf(x))/2 

To construct a new interval, one way is to use an original value, which is a value that supplies 

the midpoint point of a new interval. Then, a certain radius (uncertainty) can be added to 

and subtracted from the original value to obtain a new interval (Schwartz 35). Similarly, the 

midpoint can also serve as an approximation to a value with an error of plus or minus the 

radius. Using these definitions, the percentage uncertainty in a midpoint value would be: p = 

100*rad(x)/mid(x) (Schwartz 148). 

1.1.3 Interval Arithmetic and Functions 

 The results and properties of interval arithmetic will be omitted for this section; 

however, I recommend referring to Schwartz (1999) to understand the basics of interval 

arithmetic. The fundamental principles in interval operations are independence and 

extremes. Independence means numerical values vary independently between intervals and 

extremes means interval operations generate the widest possible bounds given the ranges of 

values (Schwartz 37-38). Interval-valued functions follow from interval arithmetic of which 

there are two types: interval extensions and united extensions (or true solution sets). Interval 

extensions are functions where interval arithmetic is applied to calculate results. United 

extensions are more computationally intensive and involve calculating fixed-point results 

with all possible combinations of variable interval endpoints. The disadvantage of the 

interval extensions is that they can over expand the true solution sets of a function (Schwartz 
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45-49). This quality of interval extensions is unfortunate since both types of extensions 

guarantee containment of all possible numerical results of the function given the inputs. 

Also, both extensions satisfy a property called inclusion monotonicity (given inputs, an 

extension generates the widest possible bounds), which is similar to the extremes principle of 

interval arithmetic (Schwartz 56). 

1.2 Foraging Theory 

 

1.2.1 Basics of Foraging Models 

 Foraging models in general study two basic problems of a forager: which 

food/prey items to consume and when to leave an area containing food (a resource patch). 

This paper will concentrate on the latter as an optimization problem. Before going into 

details of the model, it is important to understand the framework of foraging models. 

Stephens and Krebs point out that foraging and optimality models have three main 

components, decision, currency, and constraint assumptions (5). Decision assumptions 

determine which problems (or choices) of the forager are to be analyzed and these choices 

are usually expressed as variables. The optimization problem comes from assuming 

behaviour and evolutionary mechanisms optimize the outcome of a forager’s choices. 

Currency assumptions provide means of evaluating choices. These choices usually involve 

maximization, minimization, or stability of a situation. Choice evaluation is embodied in the 

currency function (a real valued function), which takes the decision variables and evaluates 

their outcome into a single value. Constraint assumptions are limitations to the model and 

relate decision variables with the currency. Limitations can be generalized to 2 types, 

extrinsic (environment limits on animal) and intrinsic (animal’s own limitations). Also, there 
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are three general constraint assumptions (also assumed by the model in section 1.2.2) for 

conventional foraging models: 

1) Exclusivity of search and exploitation – the predator can only consume or search for 

patches/prey and not perform both actions are the same time 

2) Sequential Poisson encounters – items (prey or patches) are encountered one at a time 

and there is a constant probability regarding prey/patch meetings in a short time period 

3) Complete information – the forager behaves as if it knows the rules of the model 

These three concepts of decision, currency, and constraint provide means of optimization 

given choices, how to determine their success, and limitations (Stephens and Krebs 6-11). 

1.2.2 Simplistic Analytic Foraging Model 

 Given the structure of a foraging model, it is easy to frame a model examining the 

foraging of a single animal over a collection of distinct resource patches. I have taken the 

model along with its decision, currency, and constraint assumptions from Wilson (2000) so 

derivations of the model’s equations, its origins, and an analysis and extensions of the model 

in C can be found in his book. The rules of the forager in the model are that the animal stays 

for a fixed time before moving to a new resource patch, time is discrete, and patch resource 

values (biomass, energy, etc) grow logistically. The decision assumption lies in the 

determination of the fixed time value. The currency function allows us to optimize the 

animal’s situation given this fixed time and also allows us to apply constraints to the model 

(Wilson 152). Despite its name, the simplistic analytic foraging model actually characterizes 

foraging simulation results well using the model’s specifications. Here is a list of parameters 

taken in by the model: 
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patches ofnumber  -N

forager  of rate metabolicconstant  - 

patchesbetween   travelingofcost  sforager' -

rate consuming resourceforager  - 

patch) ain  resources ofamount  (maximumcapacity  carryingpatch  - 

rategrowth patch  - 

mx

tx

K





 

To derive the model, we can start analyzing the resource side assuming that the ith patch 

without the forager consuming grows logistically: 

 









K

r
r

dt

dr i
i

i 1  

Where t is time and ri is the amount of resources in the ith patch. If a forager enters a given 

patch f, resource dynamics can be modeled as follows: 

 f

f

f

f
r

K

r
r

dt

dr
 










 1  

In the fth patch, the consumer decreases the rate of growth by a factor related to beta, the 

consuming rate. To model overall patch growth, average patch growth for N-1 identical 

patches is added to the patch growth (or decay) of the fth patch: 

 

















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 r
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r
r

dt

dr 
  )1(  

To achieve an equilibrium resource density r*, we set dr/dt = 0 and solve for r yielding: 

 K
N

r 











1*   

A quick analysis of the limit as N approaches infinity shows that the forager’s effect is 

insignificant at equilibrium since the term containing beta goes to zero and r* goes to K as 

expected (Wilson 153-154). The resource side provides us with an environment and extrinsic 
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constraints that will affect the currency function which lies on the forager side of the model. 

Key to resource exploitation models is the gain function, g(t). The gain function specifies the 

amount consumed from a resource patch given time t. Assuming the forager lands on a 

resource patch always in equilibrium r*, g(t) is the time integral of its instantaneous 

consumption rate minus its metabolic costs. Metabolic costs represent intrinsic constraints 

since the animal must “pay” these costs when foraging. 

  

t

mtf txxdtrtg
0

)()(   

The xt and xm constraints act as intrinsic limitations on the model since the traveling costs 

prevents the forager from moving quickly from patch to patch and skimming resources, 

while the metabolic cost causes the forager to gather resources for threat of death. In order 

to evaluate g(t), we require an analytical solution to rf, which measures the resources in the 

patch the forager is in. Solving the first order differential equation from the resource side 

derivations for rf using separation of variables yields: 

 
  *)(*

)(*
)( reKr

Kr
r

tf

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Then substituting this equation into g(t) and solving the integral we get: 

 
 

)()(
)(

*)(*
ln)(

)(

txxt
K

reKrK
tg mt

t

































 

 

Using this gain function, the crucial equation from the forager perspective, the net foraging 

rate function can be calculated as: 

 
t

tg
tR

)(
)(   
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R(t) is the currency function for our model since it is the basis of choice evaluation and 

optimization for the model (Wilson 154-155). It also combines the decision variables and 

constraints into one value and will be a basis for graphical analysis later on. 

1.2.3 The Optimal Residence Time 

 Assuming behavioural and evolutionary mechanisms drive foragers to optimize the 

time spent on each patch. This assumption implies that they will stay long enough to 

optimize the rate of resource consumption, r(t). Mathematically, this choice implies the 

maximization of r(t): 

 
0

*

*)('

*

*)()(
2


t

tg

t

tg

dt

tdr
 

where t* is called the optimal residence time. For rate maximization, r’’(t*) < 0 must also be 

checked; however, assuming r(t*) is at a maximum, we obtain the equation: 

0
*

*)(
*)('*)(

*

*)(
*)(' 

t

tg
tgtr

t

tg
tg  

which relates r(t) to the derivative of the gain function. The second function above is the 

function to be used for root finding. Essentially, the optimal time to leave a patch is when 

the expected rate of resource return decreases to the average rate of return of a new patch. 

This result, which is a statement of the marginal value theorem for foraging, is a reasonable 

estimation of animal behaviour considering a forager’s desire to maximize on its resource 

intake (Wilson 156-157). One problem in optimization problems is figuring out whether an 

optimal point exists and in this case, we must be sure r’’(t*) < 0 and be sure such a t* exists. 

Unfortunately, due to the complexity of g(t) is it not possible to solve for an explicit solution 

of t* so to justify existence of a solution, we turn to theoretical justifications and, later in 

section 3.1.1, graphical means. Due to the conditions specified in foraging models, gain 

functions are “well-defined, continuous, deterministic, and negatively accelerated” functions 
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(Stephens and Krebs 25-26). This outcome results from assuming patch resources are 

sufficient (i.e. the equilibrium resource is sufficiently large) enough that, when the forager 

enters a patch, r(t) will reach a maximum and then decrease until the gain function reaches 

an asymptotic maximum when further time spent in the resource patch does not yield 

significantly more gain in resources. The reason for the gain function’s properties is the 

assumption that patches contain a finite number of resources and foraging depletes them. 

This assumption; however, relies on the assumptions about residence time, foraging rates, 

and resource patch dynamics in general (Stephens and Krebs 25-26). Due to the simple 

nature of the model, these gain function properties hold so r(t) does reach a maximum at t* 

and r’’(*t) < 0. 

Chapter 2: Research Problems and Methods 

2.1 Motivation 

 

2.1.1 Problems with Fixed Point Optimization in Foraging Models 

 Stephens and Krebs (1986) discuss various limitations and criticisms of behavioural 

ecology optimality models. One criticism has to do with “static versus dynamic” modeling 

since basic foraging models often do not take the animal’s state into account (i.e. whether an 

animal is starving or fully rested and fed) (Stephens and Krebs 34). Also, a problem that 

occurs during testing phases of a model is when it breaks down. At that point, the ecologist 

must re-analyze the model to find what is incorrect, often checking constraints (Stephens 

and Krebs 208) 

2.1.2 Interval Analysis as an Uncertainty Method 

 IA can address but not completely solve the problems stated above. One of the 

strengths of IA is its ability to evaluate a whole range of values in one calculation that would 
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take an infinite number of fixed-point calculations to produce. As a result, IA could simulate 

the presence of multiple states of an animal and/or its environment by placing uncertainty in 

the model’s parameters. This method provides easy deterministic implementation of multiple 

state models and produces ranges of values for evaluation. This method partially addresses 

the second problem of when a model breaks down. A model could break down due to 

incorrect assumptions about constant forager or environment states. Another application of 

IA to testing is that IA is numerically superior when it comes to testing different acceptable 

uncertainties in values could help identify problems in the model or unrealistic assumptions. 

2.1.3 Research Problem 

 The purpose of this paper is to introduce IA methods to the simplistic analytic 

foraging model and calculate interval optimal residence times for interval parameters. At 

same time, solving the fixed point optimal residence time will provide framework from 

which to analyze the interval results. The optimization will be done for patch sizes N = 3, 5, 

10, and 20. The parameters with uncertainty will be: 

y)uncertaint (5%forager  of rate metabolicconstant  - 

y)uncertaint (20% patchesbetween   travelingofcost  sforager' -

y)uncertaint % (10 rate consuming resourceforager  - 

y)uncertaint % (1 rategrowth patch  - 

m
x

t
x





 

These uncertainties could be strengthened with fieldwork studies; however, for simplicity 

they are determined a priori. After computing interval optimal residence times, the intervals 

and their fixed-point approximations will be compared to the fixed-point optimal times to 

compare algorithms and to analyze the functions’ behaviour under both methods. On a 

more theoretical side, stability analysis of the model will be conducted. This analysis involves 

varying one uncertain parameter, while holding the others constant until the model fails. 



 14 

Therefore, stability analysis is used to see performance of the model under parameter 

uncertainty perturbations. Conditions for failure will be specified in section 2.2.2.3. 

2.1.4 Software 

 The language to be used is Matlab version 5.3 with an add-on toolbox called 

INTLAB programmed by Siegfried Rump (2001). Refer to the references for documentation 

on the INTLAB toolbox. For this paper, the INTLAB toolbox is used to provide interval 

data structures, implementation of interval arithmetic and interval-valued functions, as well 

as basic functions for radius, midpoint, and intersection interval functions in Matlab. 

2.2 Methodology 

 

2.2.1 Fixed-Point Analysis 

2.2.1.1 General Method 

 Rootfunc(t) specified below is the function whose root we are seeking: 

t

tg
tgtrootfunc

)(
)(')(   

Since rootfunc(t) has relatively cheap function evaluations it is useful to perform a “graphical 

search” for the root (Van Loan 294). This procedure involves plotting the function in the 

time interval of interest and examining its roots. In addition to this function, during the 

fixed-point analysis, we will also plot r(t) to search for the existence of maximums as well as 

rootfunc’’(t) to confirm that rootfunc’’(t) is indeed negative in the interval of interest. 

Although, graphical searches are rather trivial, they provide a large amount of information 

confirming theoretical conclusions in section 1.2 as well as enabling a pictorial view of the 

objective and related functions. Another use of the plotting of functions before optimization 

is to use the plots to generate starting intervals for iterations of root finding methods. In 
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order to plot rootfunc, r(t), and r’’(t) it is necessary to implement equations for g(t), g’(t), and 

r’’(t). The details for calculating g’(t) and r’’(t) are left out since g(t) is a rather messy 

function, but the derivatives are implemented in the Matlab code for section 3.1.1. Assuming 

the properties of the gain function discussed in 1.2.3, which will be confirmed in section 

3.1.1, it is necessary to choose an algorithm that will produce a root given the conditions of 

rootfunc(t). 

2.2.1.2 Algorithm: Bisection Method 

 Since rootfunc(t) is continuous and changes sign within the interval of interest, the 

bisection method can be used. This method involves calculating a sequence of smaller and 

smaller intervals that bracket (contain) the root of rootfunc(t). The main algorithm proceeds 

as follows (if rootfunct(t) = f(t)) given a bracketing interval [a,b]: 

 assume f(a)f(b)  0 and let m = (a+b)/2 

 either f(a)f(m)  0 or f(m)f(b)  0 

 in the first case we know the root is in [a,m] else it is it [m,b] 

In either situation, the search interval is halved and this process can be continued until a 

small enough interval is obtained. Since the search interval is halved with each iteration, the 

bisection method exhibits O(n) convergence. The only tricky points are to optimize the 

method so that only one function evaluation is required per iteration after the first and to 

establish a safe convergence criterion so that the tolerance interval is not smaller than the 

gap in the floating point numbers between a and b. Van Loan provides the core of the code 

for the bisection method with slight modifications to fit the parameters of the model (280). 

Although the bisection method does not experience O(n^2) convergence like the Newton 

method, rootfunc(t) is simple enough that it converges quickly for practical purposes. Also, 

it is simple (algorithmically and doesn’t require rootfunc’(t) implementation) and translates 
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well into the idea of searching using a starting interval [a,b], which we will use later in the 

interval root finding. 

2.2.2 Interval Analysis 

2.2.2.1 General Method 

 When changing from fixed-point to interval based root finding there are some 

immediate differences. The root is no longer a crisp interval since iterations using an 

interval-valued function produce intervals. As a result, convergence criterions and the 

general methods of root finding must have a set valued approach. Because the optimal 

residence times will inherently be thick intervals since the rootfunc(t) is now an interval 

function with uncertain parameters, convergence will be solved simple by setting a maximum 

number of iterations. The reason this convergence guarantees an enclosure of the root is due 

to the Interval Newton method, which is based on the fixed-point one.  

2.2.2.2 Interval Newton Method 

For details of the math and convergence properties of the algorithm, refer to Kulisch et al. 

(2001). This algorithm, when finding roots of fixed-point functions exhibits O(n^2) 

convergence. Like the Bisection Method, it requires a bracketing interval to begin and with 

each iteration generates smaller and smaller intervals (if possible), which are bounded by 

intersections with previous iterations. The algorithm is as follows: 

 
i

i

i
ii x

xf

xmf
xmx 










)('

)(
)(1  

where the x’s are intervals, m(x) is the midpoint of a the interval x, and f is the function 

whose root we seek (Kulisch et al. 35-36). The similarity of this algorithm to the fixed-point 

Newton method is that a starting interval must be supplied and the interval size is decreased 

using a f(x)/f’(x) term during iterations. This algorithm is almost as simple as the bisection 



 17 

method since an easy convergence criterion has been specified; however, the interval 

Newton requires implementation of rootfunc’(t) and requires )('0 xrootfunc  for an 

evaluated interval x. Through computational trials, I have decided to increase the complexity 

of the function evaluations for the f(x)/f’(x) by computing its united extension instead of a 

interval extension. Since both f(x) and f’(x) involve many interval arithmetic calculations in 

an interval extension, the values are over expanded from their true solution set and in 

computing optimal residence times we are interested in finding tight bounds on the root 

given model uncertainties. As a result, the interval Newton step is calculated by finding the 

minimums and maximums of f(x) and f’(x) given all the combinations of the endpoints of 

the parameters and the time interval and producing united extension values for both 

quantities. 

2.2.2.3 Variation and Constraints on Parameters 

 As outlined in 2.1.3, percent uncertainties in the alpha, beta, xt, and xm parameters 

will be added when analyzing the model using interval root finding. This variation of 

parameters serves to address the problems with fixed-point optimization outlined in 2.1.1. 

The potential use for interval parameters lies in model testing, simulating a range of 

environment and forager states, and relaxation of constraints. Besides replacing parameters 

with intervals, we also want to conduct the stability analysis mentioned in 2.1.3. This process 

involves increasing uncertainties of a given parameter while keeping all other parameters 

constant until the model fails. After specifying the interval Newton algorithm we can 

construct a failure condition. Failure of the model can be considered to occur when the 

interval Newton method returns of the initial interval supplied to the interval root finder as 

the optimal time interval for any N number of patches (i.e. the algorithm was unable to 

provide tighter bounds for optimal residence time than the initial interval). This initial 



 18 

interval will be chosen to be a sufficiently thick interval from fixed-point analysis, which 

encloses the time interval of interest. As a result, the interval will be the one chosen to 

initiate the bisection method. There are other conditions that could classify failure; however, 

from a model standpoint, a very thick interval for an optimal residence time is not very 

useful since it implies too much variability in a forager’s behaviour. Consequently, stability 

analysis is a numerically intensive procedure involving gradual increased uncertainties of a 

parameter until model failure. It is interesting more from a theoretical standpoint since it 

describes limitations of the model as well as extreme situations and their effects on a 

forager’s optimal residence time. 

Chapter 3: Numerical Analysis of Model 

 In this chapter, I will include Matlab code of key functions implementing the general 

methods discussed in 2.2, supporting functions, and algorithms as they are used in the 

numerical analysis of the model. 

3.1 Fixed-Point Analysis  

 

3.1.1 Graphical Analysis 

 In section 2.2.1.1, the graphs of r(t), rootfunc(t) and rootfunc’(t) were seen to be 

informative for selecting an initial interval to begin the bisection and interval Newton 

methods. Also, these graphs help visualize the behaviour of the model as time passes as well 

as confirming an optimal residence time exists. The following functions are required to 

implement the functions and graph them. Also, the following parameter specifications from 

Wilson are used (155): 



 19 

patches ofnumber  -3,5,10,20N

forager  of rate metabolicconstant  -0.01 

patchesbetween   travelingofcost  sforager' -0.1

rate consuming resourceforager  -0.1 

patch) a resources ofamount  (maximumcapacity  carryingpatch  -1 

rategrowth patch  - 05.0













mx

tx

K





 

function gain = gain(t, alpha, K, beta, xt, xm, N) 

% GAIN(t, alpha, K, beta, xt, xm, N) Gain Function 

% 

% General evaluation of the g(t) function which  

% takes in the variables in order: time, patch growth 

% rate, patch carrying capacity, consuming rate,  

% travel cost, metabolic rate, and number of 

% resource patches 

 

rstar = (1 - beta/alpha/N)*K; 

deltaBA = beta - alpha; 

num = (alpha*rstar + ... 

     K*(deltaBA))*exp(deltaBA*t) - ...  

     alpha*rstar; 

denom = K*deltaBA; 

inLog = num/denom; 

gain = (beta*K/alpha)*(log(inLog) - deltaBA*t) - ... 

       (xt + xm*t); 

 

function intakeRate = r(t, alpha, K, beta, xt, xm, N) 

% R(t, alpha, K, beta, xt, xm, N) Intake Rate Function 

% 

% Calculates the net intake rate. Takes in the variables 

% in order: time, patch growth rate, patch carrying  

% capacity, consuming rate, travel cost, metabolic rate, 

% and number of resource patches 

 

g  = gain(t, alpha, K, beta, xt, xm, N); 

intakeRate = g./t; 

 

function gainprime = gainprime(t, alpha, K, beta, xt, xm, N) 

% GAINP(t, alpha, K, beta, xt, xm, N) Gain Function Derivative 

% 

% General evaluation of the g'(t) function 

% 

% Takes in the variables in order: time, patch growth 

% rate, patch carrying capacity, consuming rate,  

% travel cost, metabolic rate, and number of 

% resource patches 

 

rstar = (1 - beta/alpha/N)*K; 

deltaBA = beta - alpha; 

exppart = (alpha*rstar + K*deltaBA)*exp(deltaBA*t); 

num = deltaBA*exppart; 

denom = exppart - alpha*rstar; 

gainprime = (beta*K/alpha) * (num./denom - deltaBA) - xm; 
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function rootfunc = rootfunc(t, alpha, K, beta, xt, xm, N) 

% ROOTFUNC(t, alpha, K, beta, xt, xm, N) Root Function 

% 

% This function the one we want to find the root of 

% Takes in the variables in order: time, patch growth 

% rate, patch carrying capacity, consuming rate,  

% travel cost, metabolic rate, and number of 

% resource patches 

 

gp = gainprime(t, alpha, K, beta, xt, xm, N); 

g  = gain(t, alpha, K, beta, xt, xm, N); 

rootfunc = gp - g./t; 

 

function rootprime = rootprime(t, alpha, K, beta, xt, xm, N) 

% ROOTPRIME(t, alpha, K, beta, xt, xm, N) Root Function Derivative 

% 

% General evaluation of the rootfunc'(t)  

% 

% Takes in the variables in order: time, patch growth 

% rate, patch carrying capacity, consuming rate,  

% travel cost, metabolic rate, and number of 

% resource patches 

 

rstar = (1 - beta/alpha/N)*K; 

deltaBA = beta - alpha; 

exppart = (alpha*rstar + K*deltaBA)*exp(deltaBA*t); 

gpp = (beta*K/alpha*(deltaBA^2)*exppart) .* ... 

      (-alpha*rstar./(exppart - alpha*rstar).^2); 

gp = gainprime(t, alpha, K, beta, xt, xm, N); 

g = gain(t, alpha, K, beta, xt, xm, N); 

rootprime = gpp - (gp.*t - g)./t.^2; 

 
function ga = ga() 

% GA Graphical Analysis of Root and Intake functions 

% 

% Plots graphs of the intake and root functions 

% for N = 3, 5, 10, 20 and selected t intervals 

 

close all; 

% Parameter settings 

alpha = 0.05; beta = 0.1; 

xt = 0.1; xm = 0.01; 

K = 1; 

 

% Plotting Intake function 

t = linspace(1.3, 40, 300); 

w = r(t, alpha, K, beta, xt, xm, 3); 

x = r(t, alpha, K, beta, xt, xm, 5); 

y = r(t, alpha, K, beta, xt, xm, 10); 

z = r(t, alpha, K, beta, xt, xm, 20); 

N = [3 5 10 20]; 

plot(t,w,'-',t,x,':',t,y,'-.',t,z,'--'); 

title('Intake Rate vs. Residence Time') 

xlabel('Residence Time'); ylabel('Intake Rate') 

legend('N = 3','N = 5','N = 10','N = 20'); 
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% Plotting Root function 

figure; 

t = linspace(4, 20, 300); 

w = rootfunc(t, alpha, K, beta, xt, xm, 3); 

x = rootfunc(t, alpha, K, beta, xt, xm, 5); 

y = rootfunc(t, alpha, K, beta, xt, xm, 10); 

z = rootfunc(t, alpha, K, beta, xt, xm, 20); 

z1 = rootprime(t, alpha, K, beta, xt, xm, 3); 

z2 = rootprime(t, alpha, K, beta, xt, xm, 5); 

z3 = rootprime(t, alpha, K, beta, xt, xm, 10); 

z4 = rootprime(t, alpha, K, beta, xt, xm, 20); 

plot(t,w,'-',t,x,':',t,y,'-.',t,z,'--',t,0,'-',t,z1,t,z2,t,z3,t,z4); 

title('Root Function') 

xlabel('Residence Time'); ylabel('Objective Function') 

legend('N = 3','N = 5','N = 10','N = 20'); 

 

This last function produces two plots that can be used for graphical analysis (shown on next 

page). One shows the intake rate as a function of time for N = 3, 5, 10, and 20 resources 

patches. From the first graph, we can confirm that r(t), for different values of N, does 

indeed have a maximum and the downward sloping nature after the maximum confirms the 

negative acceleration of the gain function as time passes. The second graph is informative in 

showing rootfunc(t) and provides an interval of [4, 16] where all the roots of the function are 

contained for the different N. An additional plot of rootfunc’(t) (although not labeled but 

are shown as upward sloping curves below the root function) ensures that the interval 

Newton root finding algorithm will work since not only is rootfunc’(t) < 0, but 

])16,4(['0 rootfunc  and it turns out that further plotting shows that rootfunc’(t) does not 

assume a 0 until much later (around t = 40) for t > 0 and different N values. 
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3.1.2 Optimization and Analysis 

 With information from the previous section, we can now proceed to fixed-point and 

interval root finding with confidence that rootfunc(t) is well behaved for the chosen 

algorithms and that optimal residence times exist. The following code implements the 

bisection method by Van Loan and fixed-point root finding which uses the same parameter 

specifications as in the graphical analysis (280-281). 

function root = Bisection(a, b, alpha, K, beta, xt, xm, N) 

% BISECTION(a, b) Bisection Root Finder 

% 

% Algorithm based on Bisection method by Van Loan (pg. 281) 

% a and b define a bracketing interval that contains a root 

% of the function rootfunc while other parameters are passed 

% into rootfunc 

% 

% Convergence is set so that tolerance is never smaller than 

% than the spacing between the floating point numbers a and b 

 

fa = rootfunc(a, alpha, K, beta, xt, xm, N);  

fb = rootfunc(b, alpha, K, beta, xt, xm, N);  

delta = 1/500000; 

if fa*fb > 0 

   disp('Initial interval is not bracketing.') 

   disp('Please choose another interval or check function') 

   root = 'Invalid Root'; 

else  

 while abs(a-b) > delta+eps*max(abs(a),abs(b)) 

    mid = (a+b)/2; 

    fmid = rootfunc(mid, alpha, K, beta, xt, xm, N);     

    if fa*fmid<=0 

       % There is a root in [a,mid]. 

       b  = mid;  

       fb = fmid; 

    else 

       % There is a root in [mid,b]. 

       a  = mid;  

       fa = fmid; 

    end   

 end 

   root = (a+b)/2; 

end 

 

function fpoptimize = fpoptimize() 

% FPOPTIMIZE Root finding for fixed point function 

%  

% Finds the fixed point optimal residence time for different 

% numbers of resource patches N = 3, 5, 10, 20 

% using the bisection method 
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% Parameter settings 

alpha = 0.05; beta = 0.1; 

xt = 0.1; xm = 0.01; 

K = 1; 

 

% Search interval 

a = 4; b = 16; 

roots = zeros(4,1); i = 1; 

N = [3 5 10 20]; 

for j = N 

   roots(i) = Bisection(a, b, alpha, K, beta, xt, xm, j); 

   i = i + 1; 

end 

disp('Resource Patches  Optimal Residence Time') 

disp('========================================') 

for i = 1:4 

   disp(sprintf('     %2.0f          %5.10f', N(i), roots(i))) 

end 

 

The last function provides us with the following output: 

Resource Patches   Optimal Residence Time 
============================ 
      3          12.9525649548 
      5          8.4218761921 
     10          6.7857687473 
     20          6.2008125782 
 
This table of results and can combined with the graphical analysis to produce a graph of the 

intake function and a spline interpolated plot of optimal residence times t*’s and r(*t)’s for 

different N. 

function ga = gawmax() 

% GA Graphical Analysis of Root and Intake functions 

% 

% Plots graphs of the intake and root functions 

% for N = 3, 5, 10, 20 and selected t intervals 

% as well as spline interpolant curve of optimal 

% residence times on intake plot 

 

close all; 

% Parameter settings 

alpha = 0.05; beta = 0.1; 

xt = 0.1; xm = 0.01; 

K = 1; 

 

% Plotting Intake function 

t = linspace(1.3, 40, 300); 

w = r(t, alpha, K, beta, xt, xm, 3); 

x = r(t, alpha, K, beta, xt, xm, 5); 
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y = r(t, alpha, K, beta, xt, xm, 10); 

z = r(t, alpha, K, beta, xt, xm, 20); 

N = [3 5 10 20]; 

for i = 1:4 

   roots(i) = Bisection(4, 16, alpha, K, beta, xt, xm, N(i)); 

 ft(i) = r(roots(i), alpha, K, beta, xt, xm, N(i)); 

end 

maxt = linspace(roots(1), roots(4)-2); 

maxr = spline(roots, ft, maxt); 

plot(t,w,'-',t,x,':',t,y,'-.',t,z,'--',maxt,maxr); 

title('Intake Rate vs. Residence Time') 

xlabel('Residence Time'); ylabel('Intake Rate') 

legend('N = 3','N = 5','N = 10','N = 20','Optimal Residence Times'); 

 

 

This graphical result represents a holistic view of the fixed-point optimization of the r(t) 

function. In the graph, we see the optimal residence time curve, which illustrates the 

marginal value theorem since the interpolant intersects the r(t) functions at their maximums. 

We can use this interpolant to estimate optimal residence times for N > 20 and visualize 

how these times vary with N. The relation is that as N increases from 3 the optimal 

residence time in a patch decreases. This result makes sense from the model since more 
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patches imply higher average intake rates and therefore but the marginal value theorem, a 

forager will tend to move to different patches more quickly to optimize its resource 

consumption. When looking at results in the next section on IA, we should take with us the 

fixed-point optimal times as well as the bisection method’s initializing interval of [4,16] 

which can be used to initiate the interval Newton method. 

3.2 Interval Analysis 

 

3.2.1 True Solutions and Interval Optimization 

 During the interval optimization, we will simulate fixed-point optimization first using 

crisp intervals for the parameters and then conduct interval optimization by varying the 

parameters as outlined in section 2.1.3 to obtain interval optimal residence times. The 

following is code implementing the creation of a new interval data structure, the interval 

Newton algorithm, and the united extension Newton step. 

function newInterval = newInterval(c, p) 

% NEWINTERVAL  Interval creator 

% 

% Creates a new interval given a centerpoint c and 

% a percentage uncertainty p 

 

p_uncert = p/100; 

inf = c – p_uncert*absI; 

sup = c + p_uncert*absI; 

newInterval = infsup(inf, sup); 

 

function root = intNewton(x, alpha, K, beta, xt, xm, N, nEvalsMax) 

 

% INTNEWTON(a, b) Interval Root Finder 

% 

% Algorithm based on Interval Newton method by Kulisch (pg. 35-37) 

% x defines a bracketing interval that contains a root 

% of the function rootfunc while other parameters are passed 

% into rootfunc 

% 

% Convergence based on nvalsMax (maximum number of iterations) 

% since we do not know the optimal residence interval size 

 

fx = rootfunc(x, alpha, K, beta, xt, xm, N); 

if 0 < inf(fx) | 0 > sup(fx) 

   disp(‘Initial interval is not bracketing.’) 
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   disp(‘Please choose another interval or check function’) 

   root = ‘Invalid Root’; 

else 

   I = 0; 

   while I < nEvalsMax 

      x = UnitedNewtonStep(x, alpha, K, beta, xt, xm, N); 

      I = I + 1; 

   end 

   root = x; 

end 

 

function x = UnitedNewtonStep(x, alpha, K, beta, xt, xm, N) 

% UNITEDNEWTONSTEP  United Extension implementation of Newton Step 

% Since we have 5 variables that are intervals, there will be 

% 32 combinations of interval endpoints to compute for 

% the derivative quantity and 16 combinations for the 

% function quantity (16 because xmid is a crisp interval) 

 

midx = mid(x); 

% Various endpoints 

a = inf(x);   b = sup(x); 

c = inf(alpha);   d = sup(alpha); 

e = inf(beta);   f = sup(beta); 

g = inf(xt);    h = sup(xt); 

I = inf(xm);    j = sup(xm); 

num = zeros(16,1); denom = zeros(25,1); 

I = 1; 

j = 1; 

for alpha = [c d] 

   for beta = [e f] 

      for xt = [g h] 

         for xm = [I j] 

            num(i) = rootfunc(midx, alpha, K, beta, xt, xm, N); 

            I = I + 1; 

            for xval = [a b] 

               denom(j) = rootprime(xval, alpha, K, beta, xt, xm, N); 

               j = j + 1; 

            end 

         end 

      end 

   end 

end 

unitedNum = infsup(min(num), max(num)); 

unitedDenom = infsup(min(denom), max(denom)); 

comp = midx – unitedNum/unitedDenom; 

x = intersect(comp, x); 

 

function intoptimize = intoptimize() 

% INTOPTIMIZE Root finding for Interval function 

%  

% Finds the optimal residence interval for different 

% numbers of resource patches N = 3, 5, 10, 20 

% using the Interval Newton Method  

 

% Parameter settings 

alpha = newInterval(0.05, 0); beta = newInterval(0.1, 0); 

xt = newInterval(0.1, 0); xm = newInterval(0.01, 0); 
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K = 1; 

 

% Search interval 

searchInt = infsup(4, 16); 

N = [3 5 10 20]; 

roots = cell(4,1); I = 1; 

for I = 1:4 

   roots{I} = intNewton(searchInt, alpha, K, beta, xt, xm, N(i), 100); 

end 

disp(‘Resource  Optimal Residence Time          F-P Approx’) 

disp(‘ Patches’) 

disp(‘========================================================’) 

for I = 1:4 

   a = inf(roots{I}); b = sup(roots{I}); 

   midab = mid(roots{I}); 

   disp(sprintf([‘ %2.0f     [%2.10f, %2.10f]’ ... 

        ‘    %2.10f’],N(i),a,b,midab)) 

end 

 

The last function with zero uncertainty in the parameters produces the following results: 

Resource  Optimal Residence Time               F-P Approx 
 Patches 

  3    [12.9525651169, 12.9525651169]      12.9525651169 
  5     [8.4218760246, 8.4218760246]      8.4218760246 
 10     [6.7857683450, 6.7857683450]      6.7857683450 
 20      [6.2008119626, 6.2008119626]      6.2008119626 
 
Given the following parameter uncertainties: 
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x





 

 
and a change in the starting interval to [2,20], using the intoptimize function the results are: 
 
Resource   Optimal Residence Time           F-P Approx 
 Patches 
===================================== 
  3      [11.0019636898, 16.3308126324]    13.6663881611 
  5      [6.5135558910, 10.9632700610]     8.7384129760 
 10     [3.3884949151, 10.1319917480]    6.7602433315 
 20     [2.6720528558, 9.6782749976]     6.1751639267 
 
The significance of these results will be explored in chapter 4. 
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3.2.2 Stability Analysis 

 The stability analysis for this model was conducted by gradually increasing the 

percentage uncertainties from zero. Failure of the model occurs if one of the roots returned 

during optimization is found to be the same interval as the initial interval [4, 16]. The code 

implementing stability analysis is not generalized to any parameter, so user changes are made 

to select the correct variable and initial condition. The code displayed shows stability analysis 

for alpha. Through testing to speed up the stability analysis, the conditions of increments of 

two to the percentage uncertainty of a parameter after five Newton iterations are sufficient 

to produce accurate uncertainties where the model fails. 

function sa = sa() 

% SA Stability Analysis 

%  

% Finds the optimal residence interval for different 

% numbers of resource patches N = 3, 5, 10, 20 

% using the Interval Newton Method  

% Conducts gradual increase in uncertainty of a given 

% parameter until at least of the roots returned is the  

% initial interval with 5 Newton iterations 

 

% Parameter settings 

alpha = newInterval(0.05, 0); beta = newInterval(0.1, 0); 

xt = newInterval(0.1, 0); xm = newInterval(0.01, 0); 

K = 1; 

 

% Search interval 

searchInt = infsup(4, 16); 

N = [3 5 10 20]; 

p = 0; inc = 2; stop = 0; 

while stop ~= 1 

   % Choose parameter to increment percent uncertainty 

   p = p + inc; 

   alpha = newInterval(0.05, p); 

 for i = 1:4 

      root = intNewton(searchInt, alpha, K, beta, xt, xm, N(i), 5); 

      size = sup(root) - inf(root); 

      if size == 12 

         stop = 1; 

         Nstop = N(i); 

      end 

   end 

end 

a = inf(alpha); b = sup(alpha); 

disp(sprintf('Model Failure at N = %2.0f', Nstop)) 

disp(sprintf('For parameter alpha with value [%5.7f, %5.7f]',a,b)) 
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disp(sprintf('with percentage uncertainty: %3.0f',p)); 

 

The results for the 4 parameters are:  

Model Failure at N =  5 
For parameter alpha with value [0.0280000, 0.0720000] 
with percentage uncertainty:  44 
Model Failure at N =  5 
For parameter beta with value [0.0620000, 0.1380000] 
with percentage uncertainty:  38 
Model Failure at N =  5 
For parameter xt with value [0.0440000, 0.1560000] 
with percentage uncertainty:  56 
 
I was not able to find a percent uncertainty for xm that caused the model to fail even using 

different starting p values and small increments. However, the other parameters yielded 

failures at quite high percentages.  

Chapter 4: Conclusions and Future Exploration 

4.1 Results of Numerical Study 

 

4.3.1 Comparison of Fixed-Point and Interval Roots 

The values obtained from both optimization methods corresponded well since there 

was only O(10^-6) error between the results. This error bound was derived from the error 

between the fixed-point roots and the endpoints of the optimal residence time intervals and 

the error can also be seen since the interval approximations and fixed-point roots 

correspond up to the 5th decimal place. Therefore, simulating fixed-point optimization using 

interval techniques yielded a satisfactory approximation. 

4.2.3 Applications to Foraging Model 

 This section can be considered as conclusions to the research problem as well as the 

overall implications of IA to the simplistic analytic foraging model. The use of IA to simulate 

different parameter states into the system was successful since the percent uncertainties 
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yielded interval optimal residence times. As a result, IA allows the ecologist to vary 

parameters of the model within certain limitations established by stability analysis and obtain 

a range of optimal residence times a forager might choose. The percent uncertainty 

limitations on parameter variation obtained from the stability analysis are high, which is good 

since it allows a large amount of model variability. However, we should keep in mind the 

stability analysis was made varying one variable at a time. Repeating the results from section 

3.2.1, this time with percent uncertainties matching the fixed-point approximations, we 

obtain: 

Resource  Optimal Residence Time           F-P Approx   Percent 
 Patches         Uncertainty 
====================================================   
  3         [11.0019636898, 16.3308126324]   13.6663881611   19.49619  
  5          [6.5135558910, 10.9632700610]     8.7384129760    25.46065  
 10          [3.3884949151, 10.1319917480]     6.7602433315    49.87614  
 20          [2.6720528558, 9.6782749976]     6.1751639267    56.72904 
 
which provide us with just a sample of IA’s capabilities in analyzing the model. IA’s 

applications to the foraging model include adding more realism to the model through 

deterministic variability as well as allowing the ecologist to select which parameters are to be 

uncertain, their range, or different beginning time intervals. The variability is important due 

to the sometimes stochastic nature of ecological process and IA offers an alternative to 

average state approximations. As stated by Stephen and Krebs, foraging models sometimes 

run into problems when assuming constant animal metabolic rates or equilibrium resources 

(34). Therefore, IA allows the model to address some of the problems involved in fixed-

point optimization and have the potential to provide a characterization of experimental 

values for residence times by bounding them. 
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4.2 Future Exploration 

 

 The applications of increased testability, parameter variation, and interval 

optimization provided by IA to our foraging model can easily be applied to other 

deterministic models in behavioural ecology. This fact is especially true for optimality models 

where average values do not approximate well the range of states taken on by the 

environment or animal. Also, although not covered in this paper, IA has applications to 

multivariable global optimization due to it’s strength in evaluating multiple ranges of values 

which can be applied in a Newton like algorithm (see Hansen in references). An immediate 

extension of the work done on this paper involves Wilson’s Forager Simulation Model and 

extensions for multi foragers (161, 178). The two models are simulations through time of 

foragers consuming resources in a set of patches and involve a bit more forager/patch 

dynamic analysis and integration of additional foragers into the model. 



 33 

Bibliography 
 
Hart, John C. “Ray Tracing Implicit Surfaces.” Notes for Advanced Surface Modeling.  

http://graphics.cs.uiuc.edu/~jch/cs497jch/rtis.pdf (8 Nov. 2001). 

Hansen, E. R. “Global Optimization Using Interval Analysis: The One-Dimensional  

Case” Journal of Optimization Theory and Applications 29 (1979): 331-344. 

Krebs, John R. and N. B. Davies. An Introduction to Behavioural Ecology. 2nd ed.  

Sunderland: Sinauer Associates, Inc., 1987. 

Kulisch, U., R. Lohner, and A. Facius., eds. Perspectives on Enclosure Methods. New  

York: Springer-Verlag, 2001. 

Moore, Ramon E. Interval Analysis. Englewood Cliffs: Prentice-Hall, Inc. 1966. 

Neumaier, Arnold. Interval Methods for Systems of Equations. New York: Cambridge  

University Press, 1990. 

Rice, John R. Numerical Methods, Software, and Analysis. 2nd ed. New York: Academic  

Press, Inc., 1993. 

Rump, Siegfried M. “INTerval LABoratory Version 3.” INTLAB  

http://www.ti3.tu-harburg.de/~rump/intlab/index.html (14 Dec. 2001). 

Schwartz, David I. Deterministic Interval Uncertainty Methods for Structural Analysis.  

Diss. State University of New York at Buffalo, 1999. 

Stephens, David W. and John R, Krebs. Foraging Theory. Princeton: Princeton  

University Press, 1986). 

Van Loan, Charles. Introduction to Scientific Computing. 2nd ed. Upper Saddle River:  

Prentice Hall 2000. 

Wilson, Will. Simulating Ecological and Evolutionary Systems in C. Cambridge:  

Cambridge University Press, 2000. 

http://graphics.cs.uiuc.edu/~jch/cs497jch/rtis.pdf
http://www.ti3.tu-harburg.de/~rump/intlab/index.html

	Interval Analysis is a means of representing uncertainty by replacing single (fixed-point) values with intervals. In this project, interval analysis is applied to a foraging model in behavioural ecology. The model describes an individual foraging in a...
	Chapter 1: Introduction
	1.1 Interval Analysis
	1.1.1 Basics and Notation
	This paper will explain only the basics of Interval Analysis (IA) needed to understand the topics covered and assumes some prior knowledge of IA and Matlab (see 2.1.4 regarding Matlab). For a formal mathematical introduction and in depth coverage of ...
	IA’s mathematical definitions and notations are extended from set theory and ordered numerical sets called intervals (Schwartz 30). This paper considers closed interval analysis with the following definitions of an interval (using Matlab upper bound, ...
	inf(x) – denotes the infinum, or lower bound of x
	sup(x) – denotes the supremum or upper bound of x
	1.2 Foraging Theory
	1.2.1 Basics of Foraging Models
	Chapter 2: Research Problems and Methods
	2.1 Motivation
	2.1.1 Problems with Fixed Point Optimization in Foraging Models
	Chapter 3: Numerical Analysis of Model
	In this chapter, I will include Matlab code of key functions implementing the general methods discussed in 2.2, supporting functions, and algorithms as they are used in the numerical analysis of the model.
	3.1 Fixed-Point Analysis
	The last function provides us with the following output:
	Resource Patches   Optimal Residence Time
	============================
	3          12.9525649548
	5          8.4218761921
	10          6.7857687473
	3.2 Interval Analysis
	Resource  Optimal Residence Time               F-P Approx
	Patches
	3    [12.9525651169, 12.9525651169]      12.9525651169
	5     [8.4218760246, 8.4218760246]      8.4218760246
	10     [6.7857683450, 6.7857683450]      6.7857683450
	Resource   Optimal Residence Time           F-P Approx
	Patches
	=====================================
	3      [11.0019636898, 16.3308126324]    13.6663881611
	5      [6.5135558910, 10.9632700610]     8.7384129760
	10     [3.3884949151, 10.1319917480]    6.7602433315
	Model Failure at N =  5
	For parameter alpha with value [0.0280000, 0.0720000]
	Model Failure at N =  5
	For parameter beta with value [0.0620000, 0.1380000]
	Model Failure at N =  5
	For parameter xt with value [0.0440000, 0.1560000]
	Chapter 4: Conclusions and Future Exploration
	4.1 Results of Numerical Study
	Resource  Optimal Residence Time           F-P Approx   Percent
	Patches         Uncertainty
	====================================================
	3         [11.0019636898, 16.3308126324]   13.6663881611   19.49619
	5          [6.5135558910, 10.9632700610]     8.7384129760    25.46065
	10          [3.3884949151, 10.1319917480]     6.7602433315    49.87614
	The applications of increased testability, parameter variation, and interval optimization provided by IA to our foraging model can easily be applied to other deterministic models in behavioural ecology. This fact is especially true for optimality mod...

