INTERVAL ANALYSIS AND ITS
APPLICATIONS TO OPTIMIZATION

IN BEHAVIOURAL ECOLOGY

by

Justin Tung

CS 490 Independent Research Report

Instructor: David Schwartz

Date: December 19, 2001

Table of Contents

Abstract 4
1. Introduction 5
1.1 Interval Analysis 5
1.1.1 Basics and Notation 5
1.1.2 Uncertainty and Approximating Values 5
1.1.3 Interval Arithmetic and Functions 6
1.2 Foraging Theory 7
1.2.1 Basics of Foraging Models 7
1.2.2 Simplistic Analytic Foraging Model 8
1.2.3 The Optimal Residence Time 11
2. Research Problem and Methods 12
2.1 Motivation 12
2.1.1 Problems with Fixed Point Optimization in Foraging Models 12
2.1.2 Interval Analysis as Uncertainty in Method 13
2.1.3 Research Problem 13
2.1.4 Software 14
2.2 Methodology 14
2.2.1 Fixed-Point Analysis 14
2211 General Method 14
2.2.1.2 Algorithm: Bisection Method 15
2.2.2 Interval Analysis 16
2221 General Method 16
2.2.2.2 Algorithm: Interval Newton’s Method 16
2.2.2.3 Variation and Constraints on Parameters 17
3. Numerical Analysis of Model 18
3.1 Fixed Point Analysis 18
3.1.1 Graphical Analysis 18
3.1.2 Optimization and Analysis 23
3.2 Interval Analysis 26
3.2.1 True Solutions and Interval Optimization 26

3.2.2 Stability Analysis 29

4. Conclusions and Future Exploration
4.1 Results of Numerical Study
4.1.1 Comparison of Fixed Point and Interval Roots
4.1.2 Applications to Foraging Model

4.2 Future Exploration

Bibliography

30
30
30
30
32

33

Abstract

Interval Analysis is a means of representing uncertainty by replacing single (fixed-point)
values with intervals. In this project, interval analysis is applied to a foraging model in
behavioural ecology. The model describes an individual foraging in a collection of
continuously renewing resource patches. This model is used to determine the optimal
residence time of the forager in a resource patch assuming the forager wants to maximize its
rate of resource intake. Before applying interval analysis, fixed-point (non-interval)
optimization will be done to serve as a basis. Certain parameters in the model will then be
replaced with intervals and interval-based optimization conducted. A comparison of the
interval and fixed-point results will be done as well as analysis of parameter intervals and

their constraints, root approximations, and applications to the model.

Chapter 1: Introduction

1.1 Interval Analysis

1.1.1 Basics and Notation

This paper will explain only the basics of Interval Analysis (IA) needed to
understand the topics covered and assumes some prior knowledge of IA and Matlab (see
2.1.4 regarding Matlab). For a formal mathematical introduction and in depth coverage of
concepts see Schwartz (1999) or Moore (1966) listed in the references. Interval analysis was
initially developed in the late 1960’s to bound computational error and it is a deterministic
way of representing uncertainty in values by replacing a number with a range of values
(Schwartz 17). Fixed-point analysis is simply analysis using non-interval values where there is
no uncertainty in the values. As a result, IA uncertainty concepts can be used to model
varying biological parameters in the ecological model to be explored in section 1.2 and also
to frame fixed-point results.

IA’s mathematical definitions and notations are extended from set theory and
ordered numerical sets called intervals (Schwartz 30). This paper considers closed interval
analysis with the following definitions of an interval (using Matlab upper bound, lower
bound style notation):

x =[inf(x), sup (x)] ={x| inf(x) < x <sup(x), inf(x),sup(x), x € R}
inf(x) — denotes the infinum, or lower bound of x
sup(x) — denotes the supremum or upper bound of x
1.1.2 Uncertainty and Approximating Values

There are a several useful quantities related to the concept of the interval: size,

radius, and midpoint. The size (or thickness) of an interval indicates the uncertainty in a

value and is specified as a width: w(x) = sup(x) - inf(x) (Schwartz 32-33). Intervals with zero
thickness are crisp intervals whereas non-crisp intervals said to be thick. The concepts of
radius and midpoint are useful in describing intervals as well as constructing them. The
radius and midpoint are defined as (Schwartz 33):

rad(x) = w(x)/2

mid(x) = (sup(x) + inf(x))/2
To construct a new interval, one way is to use an original value, which is a value that supplies
the midpoint point of a new interval. Then, a certain radius (uncertainty) can be added to
and subtracted from the original value to obtain a new interval (Schwartz 35). Similarly, the
midpoint can also serve as an approximation to a value with an error of plus or minus the
radius. Using these definitions, the percentage uncertainty in a midpoint value would be: p =
100*rad(x)/mid(x) (Schwartz 148).
1.1.3 Interval Arithmetic and Functions

The results and properties of interval arithmetic will be omitted for this section;
however, I recommend referring to Schwartz (1999) to understand the basics of interval
arithmetic. The fundamental principles in interval operations are independence and
extremes. Independence means numerical values vary independently between intervals and
extremes means interval operations generate the widest possible bounds given the ranges of
values (Schwartz 37-38). Interval-valued functions follow from interval arithmetic of which
there are two types: interval extensions and united extensions (or true solution sets). Interval
extensions are functions where interval arithmetic is applied to calculate results. United
extensions are more computationally intensive and involve calculating fixed-point results
with all possible combinations of variable interval endpoints. The disadvantage of the

interval extensions is that they can over expand the true solution sets of a function (Schwartz

45-49). This quality of interval extensions is unfortunate since both types of extensions
guarantee containment of all possible numerical results of the function given the inputs.
Also, both extensions satisfy a property called inclusion monotonicity (given inputs, an
extension generates the widest possible bounds), which is similar to the extremes principle of
interval arithmetic (Schwartz 506).

1.2 Foraging Theory

1.2.1 Basics of Foraging Models

Foraging models in general study two basic problems of a forager: which
food/prey items to consume and when to leave an area containing food (a resource patch).
This paper will concentrate on the latter as an optimization problem. Before going into
details of the model, it is important to understand the framework of foraging models.
Stephens and Krebs point out that foraging and optimality models have three main
components, decision, currency, and constraint assumptions (5). Decision assumptions
determine which problems (or choices) of the forager are to be analyzed and these choices
are usually expressed as variables. The optimization problem comes from assuming
behaviour and evolutionary mechanisms optimize the outcome of a forager’s choices.
Currency assumptions provide means of evaluating choices. These choices usually involve
maximization, minimization, or stability of a situation. Choice evaluation is embodied in the
currency function (a real valued function), which takes the decision variables and evaluates
their outcome into a single value. Constraint assumptions are limitations to the model and
relate decision variables with the currency. Limitations can be generalized to 2 types,

extrinsic (environment limits on animal) and intrinsic (animal’s own limitations). Also, there

are three general constraint assumptions (also assumed by the model in section 1.2.2) for
conventional foraging models:
1) Exclusivity of search and exploitation — the predator can only consume or search for
patches/prey and not perform both actions are the same time
2) Sequential Poisson encounters — items (prey or patches) are encountered one at a time
and there is a constant probability regarding prey/patch meetings in a short time petiod
3) Complete information — the forager behaves as if it knows the rules of the model
These three concepts of decision, currency, and constraint provide means of optimization
given choices, how to determine their success, and limitations (Stephens and Krebs 6-11).
1.2.2 Simplistic Analytic Foraging Model

Given the structure of a foraging model, it is easy to frame a model examining the
foraging of a single animal over a collection of distinct resource patches. I have taken the
model along with its decision, currency, and constraint assumptions from Wilson (2000) so
derivations of the model’s equations, its origins, and an analysis and extensions of the model
in C can be found in his book. The rules of the forager in the model are that the animal stays
for a fixed time before moving to a new resource patch, time is discrete, and patch resource
values (biomass, energy, etc) grow logistically. The decision assumption lies in the
determination of the fixed time value. The currency function allows us to optimize the
animal’s situation given this fixed time and also allows us to apply constraints to the model
(Wilson 152). Despite its name, the simplistic analytic foraging model actually characterizes
foraging simulation results well using the model’s specifications. Here is a list of parameters

taken in by the model:

o - patchgrowth rate

K - patchcarrying capacity (maximum amount of resources in a patch)
[- forager resource consuming rate

x; - forager's cost of traveling between patches

Xm - constant metabolic rate of forager
N - number of patches

To derive the model, we can start analyzing the resource side assuming that the ith patch

without the forager consuming grows logistically:

dt K

Where t is time and r; is the amount of resources in the ith patch. If a forager enters a given

patch f, resource dynamics can be modeled as follows:

drf—arl r, P
d ' K f

In the fth patch, the consumer decreases the rate of growth by a factor related to beta, the
consuming rate. To model overall patch growth, average patch growth for N-1 identical

patches is added to the patch growth (or decay) of the fth patch:

ar _N-10 0 "V a8
(ar(l K)]+ (ar(l K) rj

dt N N N
E:ozr(l—L)—ﬁr
dt K’ N

To achieve an equilibrium resource density r*, we set dr/dt = 0 and solve for r yielding:

gy

A quick analysis of the limit as N approaches infinity shows that the forager’s effect is
insignificant at equilibrium since the term containing beta goes to zero and r* goes to K as

expected (Wilson 153-154). The resource side provides us with an environment and extrinsic

constraints that will affect the currency function which lies on the forager side of the model.
Key to resource exploitation models is the gain function, g(t). The gain function specifies the
amount consumed from a resource patch given time t. Assuming the forager lands on a
resource patch always in equilibrium r*, g(t) is the time integral of its instantaneous
consumption rate minus its metabolic costs. Metabolic costs represent intrinsic constraints

since the animal must “pay” these costs when foraging.
t
g(t) = [Ar dt—(x +x,1)
0

The x, and x_, constraints act as intrinsic limitations on the model since the traveling costs
prevents the forager from moving quickly from patch to patch and skimming resources,
while the metabolic cost causes the forager to gather resources for threat of death. In order
to evaluate g(t), we require an analytical solution to r,, which measures the resources in the
patch the forager is in. Solving the first order differential equation from the resource side

derivations for r; using separation of variables yields:

r*kK(g-a)
(Otr*+K(ﬂ—0{))€‘(ﬂ’0‘)t —-ar*

Then substituting this equation into g(t) and solving the integral we get:

gty = 2 |n[(“r*+K(ﬂ‘“))e(Mt ar”
(04

<o j—w—@t—m+m0

Using this gain function, the crucial equation from the forager perspective, the net foraging

rate function can be calculated as:

R(t) = @

10

R(t) is the currency function for our model since it is the basis of choice evaluation and
optimization for the model (Wilson 154-155). It also combines the decision variables and
constraints into one value and will be a basis for graphical analysis later on.
1.2.3 The Optimal Residence Time

Assuming behavioural and evolutionary mechanisms drive foragers to optimize the
time spent on each patch. This assumption implies that they will stay long enough to
optimize the rate of resource consumption, r(t). Mathematically, this choice implies the
maximization of r(t):

dr® _9(™) _9'(™) _,
dt (r) t*

where t* is called the optimal residence time. For rate maximization, £”(t*) < 0 must also be

checked; however, assuming r(t*) is at a maximum, we obtain the equation:

g'(t™) =¥= rit*) = g'(t*)_¥ ~0

which relates r(t) to the derivative of the gain function. The second function above is the
function to be used for root finding. Essentially, the optimal time to leave a patch is when
the expected rate of resource return decreases to the average rate of return of a new patch.
This result, which is a statement of the marginal value theorem for foraging, is a reasonable
estimation of animal behaviour considering a forager’s desire to maximize on its resource
intake (Wilson 156-157). One problem in optimization problems is figuring out whether an
optimal point exists and in this case, we must be sure r”’(t*) < 0 and be sure such a t* exists.
Unfortunately, due to the complexity of g(t) is it not possible to solve for an explicit solution
of t* so to justify existence of a solution, we turn to theoretical justifications and, later in
section 3.1.1, graphical means. Due to the conditions specified in foraging models, gain

functions are “well-defined, continuous, deterministic, and negatively accelerated” functions

11

(Stephens and Krebs 25-26). This outcome results from assuming patch resources are
sufficient (i.e. the equilibrium resource is sufficiently large) enough that, when the forager
enters a patch, r(t) will reach a maximum and then decrease until the gain function reaches
an asymptotic maximum when further time spent in the resource patch does not yield
significantly more gain in resources. The reason for the gain function’s properties is the
assumption that patches contain a finite number of resources and foraging depletes them.
This assumption; however, relies on the assumptions about residence time, foraging rates,
and resource patch dynamics in general (Stephens and Krebs 25-26). Due to the simple
nature of the model, these gain function properties hold so 1(t) does reach a maximum at t*
and r”(*t) < 0.
Chapter 2: Research Problems and Methods

2.1 Motivation

2.1.1 Problems with Fixed Point Optimization in Foraging Models

Stephens and Krebs (1986) discuss various limitations and criticisms of behavioural
ecology optimality models. One criticism has to do with “static versus dynamic” modeling
since basic foraging models often do not take the animal’s state into account (i.e. whether an
animal is starving or fully rested and fed) (Stephens and Krebs 34). Also, a problem that
occurs during testing phases of a model is when it breaks down. At that point, the ecologist
must re-analyze the model to find what is incorrect, often checking constraints (Stephens
and Krebs 208)
2.1.2 Interval Analysis as an Uncertainty Method

IA can address but not completely solve the problems stated above. One of the

strengths of IA is its ability to evaluate a whole range of values in one calculation that would

12

take an infinite number of fixed-point calculations to produce. As a result, IA could simulate
the presence of multiple states of an animal and/or its environment by placing uncertainty in
the model’s parameters. This method provides easy deterministic implementation of multiple
state models and produces ranges of values for evaluation. This method partially addresses
the second problem of when a model breaks down. A model could break down due to
incorrect assumptions about constant forager or environment states. Another application of
IA to testing is that IA is numerically superior when it comes to testing different acceptable
uncertainties in values could help identify problems in the model or unrealistic assumptions.
2.1.3 Research Problem

The purpose of this paper is to introduce IA methods to the simplistic analytic
foraging model and calculate interval optimal residence times for interval parameters. At
same time, solving the fixed point optimal residence time will provide framework from
which to analyze the interval results. The optimization will be done for patch sizes N = 3, 5,
10, and 20. The parameters with uncertainty will be:

o - patchgrowth rate (1% uncertainty)
/3 - forager resource consuming rate (10 % uncertainty)
X - forager' s cost of traveling between patches (20% uncertainty)

Xm ™ constant metabolic rate of forager (5% uncertainty)

These uncertainties could be strengthened with fieldwork studies; however, for simplicity
they are determined a priori. After computing interval optimal residence times, the intervals
and their fixed-point approximations will be compared to the fixed-point optimal times to
compare algorithms and to analyze the functions’ behaviour under both methods. On a
more theoretical side, stability analysis of the model will be conducted. This analysis involves

varying one uncertain parameter, while holding the others constant until the model fails.

13

Therefore, stability analysis is used to see performance of the model under parameter
uncertainty perturbations. Conditions for failure will be specified in section 2.2.2.3.
2.1.4 Software

The language to be used is Matlab version 5.3 with an add-on toolbox called
INTLAB programmed by Siegfried Rump (2001). Refer to the references for documentation
on the INTLAB toolbox. For this paper, the INTLAB toolbox is used to provide interval
data structures, implementation of interval arithmetic and interval-valued functions, as well

as basic functions for radius, midpoint, and intersection interval functions in Matlab.

2.2 Methodology

2.2.1 Fixed-Point Analysis
2.2.1.1 General Method

Rootfunc(t) specified below is the function whose root we are seeking:
rootfunc(t) = g'(t) — @

Since rootfunc(t) has relatively cheap function evaluations it is useful to perform a “graphical
search” for the root (Van Loan 294). This procedure involves plotting the function in the
time interval of interest and examining its roots. In addition to this function, during the
fixed-point analysis, we will also plot r(t) to search for the existence of maximums as well as
rootfunc”(t) to confirm that rootfunc”(t) is indeed negative in the interval of interest.
Although, graphical searches are rather trivial, they provide a large amount of information
confirming theoretical conclusions in section 1.2 as well as enabling a pictorial view of the
objective and related functions. Another use of the plotting of functions before optimization

is to use the plots to generate starting intervals for iterations of root finding methods. In

14

order to plot rootfunc, (t), and r”(t) it is necessary to implement equations for g(t), ¢’(t), and
t”(t). The details for calculating g’(t) and r”(t) are left out since g(t) is a rather messy
function, but the derivatives are implemented in the Matlab code for section 3.1.1. Assuming
the properties of the gain function discussed in 1.2.3, which will be confirmed in section
3.1.1, it is necessary to choose an algorithm that will produce a root given the conditions of
rootfunc(t).
2.2.1.2 Algorithm: Bisection Method

Since rootfunc(t) is continuous and changes sign within the interval of interest, the
bisection method can be used. This method involves calculating a sequence of smaller and
smaller intervals that bracket (contain) the root of rootfunc(t). The main algorithm proceeds
as follows (if rootfunct(t) = f(t)) given a bracketing interval [a,b]:

assume f(a)f(b) <0 and let m = (a+b)/2

either f(a)f(m) <0 or f(m)f(b) <0

in the first case we know the root is in [a,m] else it is it [m,b]
In either situation, the search interval is halved and this process can be continued until a
small enough interval is obtained. Since the search interval is halved with each iteration, the
bisection method exhibits O(n) convergence. The only tricky points are to optimize the
method so that only one function evaluation is required per iteration after the first and to
establish a safe convergence criterion so that the tolerance interval is not smaller than the
gap in the floating point numbers between a and b. Van Loan provides the core of the code
for the bisection method with slight modifications to fit the parameters of the model (280).
Although the bisection method does not experience O(n"2) convergence like the Newton
method, rootfunc(t) is simple enough that it converges quickly for practical purposes. Also,

it is simple (algorithmically and doesn’t require rootfunc’(t) implementation) and translates

15

well into the idea of searching using a starting interval [a,b], which we will use later in the
interval root finding.
2.2.2 Interval Analysis
2.2.2.1 General Method

When changing from fixed-point to interval based root finding there are some
immediate differences. The root is no longer a crisp interval since iterations using an
interval-valued function produce intervals. As a result, convergence criterions and the
general methods of root finding must have a set valued approach. Because the optimal
residence times will inherently be thick intervals since the rootfunc(t) is now an interval
function with uncertain parameters, convergence will be solved simple by setting a maximum
number of iterations. The reason this convergence guarantees an enclosure of the root is due
to the Interval Newton method, which is based on the fixed-point one.
2.2.2.2 Interval Newton Method
For details of the math and convergence properties of the algorithm, refer to Kulisch et al.
(2001). This algorithm, when finding roots of fixed-point functions exhibits O(n"2)
convergence. Like the Bisection Method, it requires a bracketing interval to begin and with
each iteration generates smaller and smaller intervals (if possible), which are bounded by

intersections with previous iterations. The algorithm is as follows:

Xig = [m(xi) - f]Er.nT(XXI)))) X

where the X’s are intervals, m(x) is the midpoint of a the interval x, and f is the function
whose root we seek (Kulisch et al. 35-36). The similarity of this algorithm to the fixed-point
Newton method is that a starting interval must be supplied and the interval size is decreased

using a f(x)/f(x) term during iterations. This algorithm is almost as simple as the bisection

16

method since an easy convergence criterion has been specified; however, the interval

Newton requites implementation of rootfunc’(t) and requires O ¢ rootfunc'(x) for an

evaluated interval x. Through computational trials, I have decided to increase the complexity
of the function evaluations for the f(x)/f(x) by computing its united extension instead of a
interval extension. Since both f(x) and f(x) involve many interval arithmetic calculations in
an interval extension, the values are over expanded from their true solution set and in
computing optimal residence times we are interested in finding tight bounds on the root
given model uncertainties. As a result, the interval Newton step is calculated by finding the
minimums and maximums of f(x) and £(x) given all the combinations of the endpoints of
the parameters and the time interval and producing united extension values for both
quantities.
2.2.2.3 Variation and Constraints on Parameters

As outlined in 2.1.3, percent uncertainties in the alpha, beta, x,, and x,, parameters
will be added when analyzing the model using interval root finding. This variation of
parameters serves to address the problems with fixed-point optimization outlined in 2.1.1.
The potential use for interval parameters lies in model testing, simulating a range of
environment and forager states, and relaxation of constraints. Besides replacing parameters
with intervals, we also want to conduct the stability analysis mentioned in 2.1.3. This process
involves increasing uncertainties of a given parameter while keeping all other parameters
constant until the model fails. After specifying the interval Newton algorithm we can
construct a failure condition. Failure of the model can be considered to occur when the
interval Newton method returns of the initial interval supplied to the interval root finder as
the optimal time interval for any N number of patches (i.e. the algorithm was unable to

provide tighter bounds for optimal residence time than the initial interval). This initial

17

interval will be chosen to be a sufficiently thick interval from fixed-point analysis, which
encloses the time interval of interest. As a result, the interval will be the one chosen to
initiate the bisection method. There are other conditions that could classify failure; however,
from a model standpoint, a very thick interval for an optimal residence time is not very
useful since it implies too much variability in a forager’s behaviour. Consequently, stability
analysis is a numerically intensive procedure involving gradual increased uncertainties of a
parameter until model failure. It is interesting more from a theoretical standpoint since it
describes limitations of the model as well as extreme situations and their effects on a
foraget’s optimal residence time.
Chapter 3: Numerical Analysis of Model

In this chapter, I will include Matlab code of key functions implementing the general
methods discussed in 2.2, supporting functions, and algorithms as they are used in the
numerical analysis of the model.

3.1 Fixed-Point Analysis

3.1.1 Graphical Analysis

In section 2.2.1.1, the graphs of r(t), rootfunc(t) and rootfunc’(t) were seen to be
informative for selecting an initial interval to begin the bisection and interval Newton
methods. Also, these graphs help visualize the behaviour of the model as time passes as well
as confirming an optimal residence time exists. The following functions are required to
implement the functions and graph them. Also, the following parameter specifications from

Wilson are used (155):

18

a =0.05- patchgrowth rate

K =1- patch carrying capacity (maximum amount of resources a patch)
S =0.1-forager resource consuming rate

% =0.1- forager's cost of traveling between patches

Xm = 0.01- constant metabolic rate of forager

N = 3,5,10,20 - number of patches

function gain = gain(t, alpha, K, beta, xt, xm, N)
GAIN (t, alpha, K, beta, xt, xm, N) Gain Function

o oo

o\

General evaluation of the g(t) function which

takes in the variables in order: time, patch growth
rate, patch carrying capacity, consuming rate,
travel cost, metabolic rate, and number of

resource patches

o oo oe

oe

rstar = (1 - beta/alpha/N) *K;

deltaBA = beta - alpha;

num = (alpha*rstar +
K* (deltaBA)) *exp (deltaBA*t) -
alpha*rstar;

denom = K*deltaBA;

inLog = num/denom;

gain = (beta*K/alpha)* (log(inLog) - deltaBA*t) -

(Xt + xm*t);

function intakeRate = r(t, alpha, K, beta, xt, xm, N)
R(t, alpha, K, beta, xt, xm, N) Intake Rate Function

o\°

oe

Calculates the net intake rate. Takes in the wvariables
in order: time, patch growth rate, patch carrying
capacity, consuming rate, travel cost, metabolic rate,
and number of resource patches

o 0o oe

o\°

g = gain(t, alpha, K, beta, xt, xm, N);
intakeRate = g./t;

function gainprime = gainprime(t, alpha, K, beta, xt, xm, N)
GAINP(t, alpha, K, beta, xt, xm, N) Gain Function Derivative

o oe

oe

General evaluation of the g'(t) function

o\°

o\°

Takes in the variables in order: time, patch growth
rate, patch carrying capacity, consuming rate,
travel cost, metabolic rate, and number of

resource patches

o oe

oe

rstar = (1 - beta/alpha/N) *K;

deltaBA = beta - alpha;

exppart = (alpha*rstar + K*deltaBA) *exp (deltaBA*t);

num = deltaBA*exppart;

denom = exppart - alpha*rstar;

gainprime = (beta*K/alpha) * (num./denom - deltaBA) - xm;

19

function rootfunc = rootfunc(t, alpha, K, beta, xt, xm, N)
ROOTFUNC (t, alpha, K, beta, xt, xm, N) Root Function

o

o° oo

This function the one we want to find the root of
Takes in the variables in order: time, patch growth
rate, patch carrying capacity, consuming rate,
travel cost, metabolic rate, and number of

resource patches

o° o oe

o

gp = gainprime(t, alpha, K, beta, xt, xm, N);
g = gain(t, alpha, K, beta, xt, xm, N);
rootfunc = gp - g./t;

function rootprime = rootprime(t, alpha, K, beta, xt, xm, N)
ROOTPRIME (t, alpha, K, beta, xt, xm, N) Root Function Derivative

o° oo

o

General evaluation of the rootfunc' (t)

o

oe

Takes in the variables in order: time, patch growth
rate, patch carrying capacity, consuming rate,
travel cost, metabolic rate, and number of

resource patches

o° oP

o

rstar = (1 - beta/alpha/N) *K;
deltaBA = beta - alpha;

exppart = (alpha*rstar + K*deltaBA) *exp (deltaBA*t);
gpp = (beta*K/alpha* (deltaBA"2) *exppart) .*
(-—alpha*rstar./ (exppart - alpha*rstar).”2);

gp = gainprime(t, alpha, K, beta, xt, xm, N);
g = gain(t, alpha, K, beta, xt, xm, N);
rootprime = gpp - (gp.*t - g)./t."2;

function ga = ga()
GA Graphical Analysis of Root and Intake functions

o° oo

o\°

Plots graphs of the intake and root functions
for N = 3, 5, 10, 20 and selected t intervals

o\°

close all;
% Parameter settings
alpha = 0.05; beta = 0.1;

xt = 0.1; xm = 0.01;

K= 1;

% Plotting Intake function

t = linspace (1.3, 40, 300);

w = r(t, alpha, K, beta, xt, xm, 3);

x = r(t, alpha, K, beta, xt, xm, 5);

y = r(t, alpha, K, beta, xt, xm, 10);

z = r(t, alpha, K, beta, xt, xm, 20);

N = [3 5 10 20];

plot(t,w,'=",t,x,":", t,y,"=.",t,z,'==");

title('Intake Rate vs. Residence Time')
xlabel ('Residence Time'); ylabel ('Intake Rate')
legend('N = 3','N = 5','N = 10','N = 20");

20

[

% Plotting Root function

figure;

t = linspace (4, 20, 300);

w = rootfunc(t, alpha, K, beta, xt, xm, 3);
x = rootfunc(t, alpha, K, beta, xt, xm, 5);
y = rootfunc(t, alpha, K, beta, xt, xm, 10);
z = rootfunc(t, alpha, K, beta, xt, xm, 20);

z1l = rootprime (t, alpha, K, beta, xt, xm, 3);

z2 = rootprime (t, alpha, K, beta, xt, xm, 5);

z3 = rootprime (t, alpha, K, beta, xt, xm, 10);

z4 = rootprime (t, alpha, K, beta, xt, xm, 20);
] -

-~

plot(t,w,'-',t,x, """, t,y,'-.",t,z,'"--",t,0,' ,t,zl,t,z2,t,2z3,t,z4);

title ('Root Function')

xlabel ('Residence Time'); ylabel ('Objective Function')

legend('N = 3','N = 5','N = 10','N = 20");

This last function produces two plots that can be used for graphical analysis (shown on next
page). One shows the intake rate as a function of time for N = 3, 5, 10, and 20 resources
patches. From the first graph, we can confirm that r(t), for different values of N, does
indeed have a maximum and the downward sloping nature after the maximum confirms the
negative acceleration of the gain function as time passes. The second graph is informative in
showing rootfunc(t) and provides an interval of [4, 16] where all the roots of the function are
contained for the different N. An additional plot of rootfunc’(t) (although not labeled but
are shown as upward sloping curves below the root function) ensures that the interval
Newton root finding algorithm will work since not only is rootfunc’(t) < 0, but

0 ¢ rootfunc'([4,16]) and it turns out that further plotting shows that rootfunc’(t) does not

assume a 0 until much later (around t = 40) for t > 0 and different N values.

21

Objective Function

0.06

0.04

0.02

Intake Rate
o

-0.02

-0.04

-0.06
0

0.025

0.02

0.015

0.011"

e
o
S
54

Intake Rate vs. Residence Time

Z2Z2Z2Z

N =W
(=N]

5 10 15 20 25

Residence Time

Root Function

30

35

40

Z2Z2Z22Z
mnmunn

N =0 W
[=Ne]

-0.005f =

-0.01

-0.015

-0.02

1
6 8 10 12 14
Residence Time

20

22

3.1.2 Optimization and Analysis

With information from the previous section, we can now proceed to fixed-point and
interval root finding with confidence that rootfunc(t) is well behaved for the chosen
algorithms and that optimal residence times exist. The following code implements the
bisection method by Van Loan and fixed-point root finding which uses the same parameter

specifications as in the graphical analysis (280-281).

function root = Bisection(a, b, alpha, K, beta, xt, xm, N)
% BISECTION(a, b) Bisection Root Finder

o° o\

o\°

Algorithm based on Bisection method by Van Loan (pg. 281)
a and b define a bracketing interval that contains a root
of the function rootfunc while other parameters are passed
into rootfunc

o° 0 o° oe

o\°

Convergence is set so that tolerance is never smaller than
than the spacing between the floating point numbers a and b

oe

fa = rootfunc(a, alpha, K, beta, xt, xm, N);
fb = rootfunc (b, alpha, K, beta, xt, xm, N);
delta = 1/500000;
if fa*fb > 0
disp('Initial interval is not bracketing.')
disp('Please choose another interval or check function')
root = 'Invalid Root';
else
while abs(a-b) > deltateps*max (abs(a),abs (b))
mid = (a+b)/2;
fmid = rootfunc(mid, alpha, K, beta, xt, xm, N);
if fa*fmid<=0

o)

% There is a root in [a,mid].

b = mid;
fb = fmid;
else
% There is a root in [mid,b].
a = mid;
fa = fmid;
end
end
root = (a+b)/2;
end
function fpoptimize = fpoptimize ()

FPOPTIMIZE Root finding for fixed point function

o° oo

o\°

Finds the fixed point optimal residence time for different
numbers of resource patches N = 3, 5, 10, 20
using the bisection method

oe

oe

23

o)

% Parameter settings
alpha = 0.05; beta = 0.1;
xt = 0.1; xm = 0.01;
K=1;

% Search interval
a=4; b = 16;
roots = zeros(4,1); i = 1;
N = [3 5 10 20];
for j = N
roots (i) = Bisection(a, b, alpha, K, beta, xt, xm, Jj);
i =1+ 1;
end
disp ('Resource Patches Optimal Residence Time')
disp (' ")
for i = 1:4
disp (sprintf (' %$2.0f $5.10f"'", N(i), roots(i)))
end

The last function provides us with the following output:

Resource Patches Optimal Residence Time
3 12.9525649548
5 8.4218761921
10 6.7857687473
20 6.2008125782

This table of results and can combined with the graphical analysis to produce a graph of the
intake function and a spline interpolated plot of optimal residence times t*’s and r(*t)’s for

different N.

function ga = gawmax ()
GA Graphical Analysis of Root and Intake functions

o° oo

oe

Plots graphs of the intake and root functions
for N = 3, 5, 10, 20 and selected t intervals
as well as spline interpolant curve of optimal
residence times on intake plot

o° o

o\°

close all;

% Parameter settings
alpha = 0.05; beta = 0.1;
xt = 0.1; xm = 0.01;

K= 1;

oe

Plotting Intake function
= linspace (1.3, 40, 300);
= r(t, alpha, K, beta, xt, xm, 3);
= r(t, alpha, K, beta, xt, xm, 5);

X = cf

24

, alpha, K, beta, xt, xm, 10);

, alpha, K, beta, xt, xm, 20);

5 10 20];

for 1 = 1:4
roots (i) = Bisection (4, 16, alpha, K, beta, xt, xm, N(i));
ft(i) = r(roots(i), alpha, K, beta, xt, xm, N(i));

end

maxt = linspace(roots(l), roots(4)-2);

maxr = spline(roots, ft, maxt);

plot(t,w,'-',t,x,':",t,y,"'-.",t,z,"'--",maxt, maxr) ;

title('Intake Rate vs. Residence Time')

xlabel ('Residence Time'); ylabel ('Intake Rate')

legend('N = 3','N = 5','N = 10','N = 20', 'Optimal Residence Times');

N
([l

r(t
r(t
[3

=

Intake Rate vs. Residence Time

008 \ T T T T T T T
— N=3
N=5
\ ---N=10
0.06 \ - N=20 l
\\ —— Optimal Residence Times
0.04 il
o 0.02F
[l
x
2
3
£ oF
-0.02 -
-0.04 -
_006 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Residence Time

This graphical result represents a holistic view of the fixed-point optimization of the r(t)
function. In the graph, we see the optimal residence time curve, which illustrates the
marginal value theorem since the interpolant intersects the r(t) functions at their maximums.
We can use this interpolant to estimate optimal residence times for N > 20 and visualize
how these times vary with N. The relation is that as N increases from 3 the optimal

residence time in a patch decreases. This result makes sense from the model since more

25

patches imply higher average intake rates and therefore but the marginal value theorem, a
forager will tend to move to different patches more quickly to optimize its resource
consumption. When looking at results in the next section on IA, we should take with us the
fixed-point optimal times as well as the bisection method’s initializing interval of [4,10]
which can be used to initiate the interval Newton method.

3.2 Interval Analysis

3.2.1 True Solutions and Interval Optimization

During the interval optimization, we will simulate fixed-point optimization first using
crisp intervals for the parameters and then conduct interval optimization by varying the
parameters as outlined in section 2.1.3 to obtain interval optimal residence times. The
following is code implementing the creation of a new interval data structure, the interval

Newton algorithm, and the united extension Newton step.

function newlInterval = newlnterval (c, p)
% NEWINTERVAL Interval creator

oe

Creates a new interval given a centerpoint c and
a percentage uncertainty p

o° oo

p_uncert = p/100;

inf = ¢ - p_uncert*absI;

sup = Cc + p_uncert*absI;
newInterval = infsup(inf, sup);

function root = intNewton (x, alpha, K, beta, xt, xm, N, nEvalsMax)

INTNEWTON (a, b) Interval Root Finder

o° oo

o°

Algorithm based on Interval Newton method by Kulisch (pg. 35-37)
x defines a bracketing interval that contains a root

of the function rootfunc while other parameters are passed

into rootfunc

o oP

o° oo

o°

Convergence based on nvalsMax (maximum number of iterations)
since we do not know the optimal residence interval size

o°

fx = rootfunc(x, alpha, K, beta, xt, xm, N);
if 0 < inf(fx) | 0 > sup(fx)
disp(‘'Initial interval is not bracketing.’)

26

disp(‘Please choose another interval or check function’)
root = ‘Invalid Root’;
else
I =20;
while I < nEvalsMax

x = UnitedNewtonStep (x, alpha, K, beta, xt, xm, N);
I =1I+1;

end

root = x;

end

functlon x = UnitedNewtonStep(x, alpha, K, beta, xt, xm, N)

o

Since we have 5 variables that are intervals, there will be
32 combinations of interval endpoints to compute for

the derivative quantity and 16 combinations for the
function quantity (16 because xmid is a crisp interval)

o° oo

o\

oe°

midx = mid(x);
Various endpoints
= inf(x); b = sup
= inf (alpha); d
= inf (beta); f
h
J

oe

(x) 7
= sup(alpha)
sup(beta
(x
(x

= inf (xt); sup
= inf (xm) ; = sup
num = zeros(l6,1); denom
I =1;
= 1;
for alpha = [c d]
for beta = [e f]
for xt = [g h]
for xm = [I j]
num (i) = rootfunc (midx, alpha, K, beta, xt, xm, N);
I =1+ 1;
for xval [a b]
denom(j) = rootprime (xval, alpha, K, beta, xt, =xm,
J=3+ L
end
end
end
end
end
unitedNum = infsup (min (num), max (num)) ;
unitedDenom = infsup (min (denom), max (denom)) ;
comp = midx - unitedNum/unitedDenom;
x = intersect (comp, x);

HQ © Q O

)

zeros (25,1);

I~

function intoptimize = intoptimize ()
INTOPTIMIZE Root finding for Interval function

o oo

oe

Finds the optimal residence interval for different
numbers of resource patches N = 3, 5, 10, 20
using the Interval Newton Method

o° oo

[

% Parameter settings
alpha = newlInterval(0.05, 0); beta = newInterval(0.1, 0);
xt = newlInterval (0.1, 0); xm = newInterval (0.01, 0);

UNITEDNEWTONSTEP United Extension implementation of Newton Step

N) ;

27

1;

% Search interval

100) ;

searchInt = infsup (4, 16);
N = [3 5 10 20];
roots = cell(4,1); I = 1;
for I = 1:4

roots{I} = intNewton (searchInt, alpha, K, beta, xt, xm, N(i),
end
disp (‘Resource Optimal Residence Time F-P Approx’)
disp (' Patches’)
disp(*
for I = 1:4

a = inf(roots{I}); b = sup(roots{I});

midab = mid(roots{I});

disp(sprintf([' %2.0f [$2.10f, %2.10f]1"’

A %$2.10f"],N(i),a,b,midab))

end

The last function with zero uncertainty in the parameters produces the following results:

Resoutrce Optimal Residence Time F-P Approx
Patches
3 [12.9525651169, 12.9525651169] 12.9525651169
5 [8.42187602406, 8.4218760240] 8.4218760246
10 [6.7857683450, 6.7857683450] 6.7857683450
20 [6.2008119626, 6.2008119620)] 6.2008119626

Given the following parameter uncertainties:

o - patchgrowth rate (1% uncertainty)

/3 - forager resource consuming rate (10 % uncertainty)

X - forager' s cost of traveling between patches (20% uncertainty)

Xm ™ constant metabolic rate of forager (5% uncertainty)

and a change in the starting interval to [2,20], using the intoptimize function the results are:

Resoutrce Optimal Residence Time
Patches
3 [11.0019636898, 16.3308126324]
5 [6.5135558910, 10.9632700610]
10 [3.3884949151, 10.1319917480]
20 [2.6720528558, 9.6782749970]

F-P Approx

13.6663881611
8.7384129760
6.7602433315
6.1751639267

The significance of these results will be explored in chapter 4.

28

3.2.2 Stability Analysis

The stability analysis for this model was conducted by gradually increasing the
percentage uncertainties from zero. Failure of the model occurs if one of the roots returned
during optimization is found to be the same interval as the initial interval [4, 16]. The code
implementing stability analysis is not generalized to any parameter, so user changes are made
to select the correct variable and initial condition. The code displayed shows stability analysis
for alpha. Through testing to speed up the stability analysis, the conditions of increments of
two to the percentage uncertainty of a parameter after five Newton iterations are sufficient

to produce accurate uncertainties where the model fails.

function sa = sa()
SA Stability Analysis

o° oo

oe

Finds the optimal residence interval for different
numbers of resource patches N = 3, 5, 10, 20

using the Interval Newton Method

Conducts gradual increase in uncertainty of a given
parameter until at least of the roots returned is the
initial interval with 5 Newton iterations

o d° o o°

oe

o)

% Parameter settings

alpha = newlInterval (0.05, 0); beta = newInterval (0.1, 0);
xt = newInterval (0.1, 0); xm = newInterval(0.01, 0);

K= 1;

% Search interval
searchInt = infsup (4, 16);
N = [3 5 10 20];
p = 0; inc = 2; stop = 0;
while stop ~=1
% Choose parameter to increment percent uncertainty
p = p + inc;
alpha = newlInterval(0.05, p):;
for i = 1:4

root = intNewton (searchInt, alpha, K, beta, xt, xm, N(i), 5);
size = sup(root) - inf (root);
if size == 12
stop = 1;
Nstop = N(i);
end
end

end

a = inf(alpha); b = sup(alpha);

disp(sprintf ('Model Failure at N = %2.0f', Nstop))

disp (sprintf ('For parameter alpha with value [%5.7f, %5.7f]',a,b))

29

disp(sprintf ('with percentage uncertainty: $3.0f',p));

The results for the 4 parameters are:

Model Failure at N = 5

For parameter alpha with value [0.0280000, 0.0720000]
with percentage uncertainty: 44

Model Failure at N = 5

For parameter beta with value [0.0620000, 0.1380000]
with percentage uncertainty: 38

Model Failure at N = 5

For parameter xt with value [0.0440000, 0.1560000]
with percentage uncertainty: 56

I was not able to find a percent uncertainty for xm that caused the model to fail even using
different starting p values and small increments. However, the other parameters yielded
failures at quite high percentages.

Chapter 4: Conclusions and Future Exploration

4.1 Results of Numerical Study

4.3.1 Comparison of Fixed-Point and Interval Roots

The values obtained from both optimization methods corresponded well since there
was only O(107-6) error between the results. This error bound was derived from the error
between the fixed-point roots and the endpoints of the optimal residence time intervals and
the error can also be seen since the interval approximations and fixed-point roots
correspond up to the 5" decimal place. Therefore, simulating fixed-point optimization using
interval techniques yielded a satisfactory approximation.
4.2.3 Applications to Foraging Model

This section can be considered as conclusions to the research problem as well as the
overall implications of IA to the simplistic analytic foraging model. The use of IA to simulate

different parameter states into the system was successful since the percent uncertainties

30

yielded interval optimal residence times. As a result, IA allows the ecologist to vary
parameters of the model within certain limitations established by stability analysis and obtain
a range of optimal residence times a forager might choose. The percent uncertainty
limitations on parameter variation obtained from the stability analysis are high, which is good
since it allows a large amount of model variability. However, we should keep in mind the
stability analysis was made varying one variable at a time. Repeating the results from section

3.2.1, this time with percent uncertainties matching the fixed-point approximations, we

obtain:
Resource Optimal Residence Time F-P Approx Percent
Patches Uncertainty
3 [11.0019636898, 16.3308126324] 13.6663881611 19.49619
5 [6.5135558910, 10.9632700610] 8.7384129760 25.46065
10 [3.3884949151, 10.1319917480] 6.7602433315 49.87614
20 [2.6720528558, 9.6782749976] 6.1751639267 56.72904

which provide us with just a sample of IA’s capabilities in analyzing the model. IA’s
applications to the foraging model include adding more realism to the model through
deterministic variability as well as allowing the ecologist to select which parameters are to be
uncertain, their range, or different beginning time intervals. The variability is important due
to the sometimes stochastic nature of ecological process and IA offers an alternative to
average state approximations. As stated by Stephen and Krebs, foraging models sometimes
run into problems when assuming constant animal metabolic rates or equilibrium resources
(34). Therefore, IA allows the model to address some of the problems involved in fixed-
point optimization and have the potential to provide a characterization of experimental

values for residence times by bounding them.

31

4.2 Future Exploration

The applications of increased testability, parameter variation, and interval
optimization provided by IA to our foraging model can easily be applied to other
deterministic models in behavioural ecology. This fact is especially true for optimality models
where average values do not approximate well the range of states taken on by the
environment or animal. Also, although not covered in this paper, IA has applications to
multivariable global optimization due to it’s strength in evaluating multiple ranges of values
which can be applied in a Newton like algorithm (see Hansen in references). An immediate
extension of the work done on this paper involves Wilson’s Forager Simulation Model and
extensions for multi foragers (161, 178). The two models are simulations through time of
foragers consuming resources in a set of patches and involve a bit more forager/patch

dynamic analysis and integration of additional foragers into the model.

32

Bibliography

Hart, John C. “Ray Tracing Implicit Surfaces.” Notes for Advanced Surface Modeling.

http://graphics.cs.uiuc.edu/~jch/cs497jch/rtis.pdf (8 Nov. 2001).

Hansen, E. R. “Global Optimization Using Interval Analysis: The One-Dimensional

Case” Journal of Optimization Theory and Applications 29 (1979): 331-344.

Krebs, John R. and N. B. Davies. An Introduction to Behavioural Ecology. 2nd ed.

Sundetland: Sinauer Associates, Inc., 1987.

Kulisch, U., R. Lohner, and A. Facius., eds. Perspectives on Enclosure Methods. New
York: Springer-Verlag, 2001.

Moore, Ramon E. Interval Analysis. Englewood Cliffs: Prentice-Hall, Inc. 1966.

Neumaier, Arnold. Interval Methods for Systems of Equations. New York: Cambridge

University Press, 1990.

Rice, John R. Numerical Methods, Software, and Analysis. 2nd ed. New York: Academic

Press, Inc., 1993.
Rump, Siegfried M. “INTerval LABoratory Version 3.” INTLAB

http://www.ti3.tu-harburg.de/~rump/intlab/index.html (14 Dec. 2001).

Schwartz, David I. Deterministic Interval Uncertainty Methods for Structural Analysis.

Diss. State University of New York at Buffalo, 1999.
Stephens, David W. and John R, Krebs. Foraging Theory. Princeton: Princeton
University Press, 19806).

Van Loan, Chatrles. Introduction to Scientific Computing. 2nd ed. Upper Saddle River:

Prentice Hall 2000.

Wilson, Will. Simulating Ecological and Evolutionary Systems in C. Cambridge:

Cambridge University Press, 2000.

33

http://graphics.cs.uiuc.edu/~jch/cs497jch/rtis.pdf
http://www.ti3.tu-harburg.de/~rump/intlab/index.html

	Interval Analysis is a means of representing uncertainty by replacing single (fixed-point) values with intervals. In this project, interval analysis is applied to a foraging model in behavioural ecology. The model describes an individual foraging in a...
	Chapter 1: Introduction
	1.1 Interval Analysis
	1.1.1 Basics and Notation
	This paper will explain only the basics of Interval Analysis (IA) needed to understand the topics covered and assumes some prior knowledge of IA and Matlab (see 2.1.4 regarding Matlab). For a formal mathematical introduction and in depth coverage of ...
	IA’s mathematical definitions and notations are extended from set theory and ordered numerical sets called intervals (Schwartz 30). This paper considers closed interval analysis with the following definitions of an interval (using Matlab upper bound, ...
	inf(x) – denotes the infinum, or lower bound of x
	sup(x) – denotes the supremum or upper bound of x
	1.2 Foraging Theory
	1.2.1 Basics of Foraging Models
	Chapter 2: Research Problems and Methods
	2.1 Motivation
	2.1.1 Problems with Fixed Point Optimization in Foraging Models
	Chapter 3: Numerical Analysis of Model
	In this chapter, I will include Matlab code of key functions implementing the general methods discussed in 2.2, supporting functions, and algorithms as they are used in the numerical analysis of the model.
	3.1 Fixed-Point Analysis
	The last function provides us with the following output:
	Resource Patches Optimal Residence Time
	============================
	3 12.9525649548
	5 8.4218761921
	10 6.7857687473
	3.2 Interval Analysis
	Resource Optimal Residence Time F-P Approx
	Patches
	3 [12.9525651169, 12.9525651169] 12.9525651169
	5 [8.4218760246, 8.4218760246] 8.4218760246
	10 [6.7857683450, 6.7857683450] 6.7857683450
	Resource Optimal Residence Time F-P Approx
	Patches
	=====================================
	3 [11.0019636898, 16.3308126324] 13.6663881611
	5 [6.5135558910, 10.9632700610] 8.7384129760
	10 [3.3884949151, 10.1319917480] 6.7602433315
	Model Failure at N = 5
	For parameter alpha with value [0.0280000, 0.0720000]
	Model Failure at N = 5
	For parameter beta with value [0.0620000, 0.1380000]
	Model Failure at N = 5
	For parameter xt with value [0.0440000, 0.1560000]
	Chapter 4: Conclusions and Future Exploration
	4.1 Results of Numerical Study
	Resource Optimal Residence Time F-P Approx Percent
	Patches Uncertainty
	==
	3 [11.0019636898, 16.3308126324] 13.6663881611 19.49619
	5 [6.5135558910, 10.9632700610] 8.7384129760 25.46065
	10 [3.3884949151, 10.1319917480] 6.7602433315 49.87614
	The applications of increased testability, parameter variation, and interval optimization provided by IA to our foraging model can easily be applied to other deterministic models in behavioural ecology. This fact is especially true for optimality mod...

